Solutions to Quiz 1, ECED 3300

Problem 1

By definition,

$$
\nabla \times \mathbf{A}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}
\mathbf{a}_{r} r \mathbf{a}_{\theta} & r \sin \theta \mathbf{a}_{\phi} \\
\partial_{r} & \partial_{\theta} & \partial_{\phi} \\
0 & 0 & r \sin \theta \times \sin \theta / r^{2}
\end{array}\right|=\frac{1}{r^{3}}\left(2 \mathbf{a}_{r} \cos \theta+\mathbf{a}_{\theta} \sin \theta\right)
$$

The circulation $\oint d \mathbf{l} \cdot(\nabla \times \mathbf{A})$ depends on the dot product of the curl and $d \mathbf{l}=\mathbf{a}_{\phi} d \phi$. Since $\mathbf{a}_{\theta} \cdot \mathbf{a}_{\phi}=\mathbf{a}_{r} \cdot \mathbf{a}_{\phi}=0$, by orthogonality, we readily conclude that $d \mathbf{l} \cdot(\nabla \times \mathbf{A})=0$, implying that $\oint d \mathbf{l} \cdot(\nabla \times \mathbf{A})=0$.

Problem 2

a)Using the Gauss theorem,

$$
\oint d \mathbf{s} \cdot \mathbf{r}=\int d v \nabla \cdot \mathbf{r} .
$$

The magnitude of divergence is independent of the coordinate system, implying that we can use any coordinate system we please. In the Cartesian coordinates, $\mathbf{r}=x \mathbf{a}_{x}+y \mathbf{a}_{y}+z \mathbf{a}_{z}$. Thus,

$$
\nabla \cdot \mathbf{r}=\partial_{x}(x)+\partial_{y}(y)+\partial_{z}(z)=1+1+1=3
$$

Hence,

$$
\oint d \mathbf{s} \cdot \mathbf{r}=\int d v 3=3 v=2 \times 4 \pi / 3=4 \pi
$$

b) By construction,

$$
\mathbf{r}_{\perp}=\mathbf{r}-\mathbf{a}_{z}\left(\mathbf{r} \cdot \mathbf{a}_{z}\right)
$$

Using the cylindrical coordinates, $\mathbf{r}=\rho \mathbf{a}_{\rho}+z \mathbf{a}_{z}$, implying that $\mathbf{r} \cdot \mathbf{a}_{z}=z$. Finally,

$$
\mathbf{r}_{\perp}=\mathbf{r}-z \mathbf{a}_{z}=\rho \mathbf{a}_{\rho} .
$$

Problem 3

The fastest increase of the temperature occurs in the direction of the temperature gradient. Hence, the mosquito will fly in the direction determined by

$$
\mathbf{a}_{m}=\frac{\nabla T}{|\nabla T|}
$$

In the cylindrical coordinates, T does not depend on ϕ. It follows that

$$
\nabla T=\mathbf{a}_{\rho} \partial_{\rho} T+\mathbf{a}_{z} \partial_{z} T=-\left(\rho \mathbf{a}_{\rho}+2 z \mathbf{a}_{z}\right) e^{-\rho^{2} / 2-z^{2}}, \quad|\nabla T|=e^{-\rho^{2} / 2-z^{2}} \sqrt{\rho^{2}+4 z^{2}}
$$

At $(1,1,1), \rho=\sqrt{x^{2}+y^{2}}=\sqrt{2}, z=1$, implying that

$$
\mathbf{a}_{m}=-\frac{\sqrt{2} \mathbf{a}_{\rho}+2 \mathbf{a}_{z}}{\sqrt{6}}=-\frac{\mathbf{a}_{\rho}+\sqrt{2} \mathbf{a}_{z}}{\sqrt{3}}
$$

